Course Code: 20EC0430

SIDDAHRTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: EMI (20EC0430) Course & Branch: B. Tech – ECE

Year & Sem: III-B. Tech & I-Sem Regulation: R20

UNIT –I PERFORMANCE CHARACTERISTICS OF INSTRUMENTS

1	(a)	Define and explain		the following terms		[L2][CO1]	[8M]
	(a) Define and explain the importance of the following terms i) Accuracy ii) Precision iii) Resolution iv) Sensitivity				[01/1]		
	<i>a</i> >	(b) The expected value of the voltage across a resistor is 80 V. However, the				FT 211 C 221	F 43 F3
	(b)	measurement gives	s a value of 79 V. C.	alculate		[L3][CO3]	[4M]
				elative accuracy and (iv)	% of Accuracy.		
2	(a)					[L3][CO2]	[8M]
	(a) A set of 10 measurements that were recorded in the laboratory are presented in the table. Calculate the precision of the 6th measurement.					[OIVI]	
			Measurement	Measurement value]		
			Number	$(\mathbf{X}_{\mathbf{n}})$			
			1	98			
			2	101			
			3	102			
			4	97			
			5	101			
			6	100			
			7	103			
			8	98			
			9	106			
			10	99			
	(b)	Define Calibration	and write a short no	ote on Static and Dynam	ic Calibration.	[L1][CO1]	[4M]
3	(a)	Write a short note	on (i) Gross Errors	(ii) Systematic errors (iii) Random errors.	[L1][CO1]	[6M]
	(a) Write a short note on (i) Gross Errors (ii) Systematic errors (iii) Random errors.(b) Illustrate in detail about the statistical analysis of measurement data.			[L2][CO3]	[6M]		
	<u> </u>						
4	(a) For the following measured data $X_1 = 49.7$; $X_2 = 50.1$; $X_3 = 50.2$; $X_4 = 49.6$;			[L3][CO1]	[6M]		
	$X_5 = 49.7$, calculate (i) Arithmetic mean (ii) Deviation of each value (iii) Algebraic sum of the Deviations.						
				1			
	()		•	haracteristics of an instru	iment.	[L2][CO2]	[6M]
5		_		pasic DC Ammeter.		[L2][CO1]	[6M]
	- /			ernal resistance of 100 Ω		[L3][CO3]	[6M]
				of shunt resistance requ			
6				king principle of Multira		[L2][CO3]	[6M]
				n internal resistance of		[L3][CO3]	[6M]
	convert into a multirange ammeter having the range of 0–10 mA, 0–20 mA and						
				shunt resistance required			
7		•		inciple of a Differential V		[L2][CO2]	[6M]
	/	*		as (i) DC voltmeter and	` /	[L2][CO2]	[6M]
8	a)	Explain in detail ab	oout multirange DC	voltmeter & AC voltme	ter.	[L2][CO2]	[6M]
	b)	With a neat sketch,	, explain about ther	mocouple type RF amme	ter.	[L2][CO2]	[6M]
9			rcuit diagram, descr	ribe the construction & w	orking of a Series	[L1][CO6]	[12M]
		type Ohmmeter.					
10	/	*	rcuit diagram, desci	ribe the construction & w	orking of a Shunt	[L2][CO6]	[6 M]
		type Ohmmeter.					
			ruction and working	g of a Multimeter using a	neat circuit	[L1][CO2]	[6M]
		diagram.					

Course Code: 20EC0430 **R20**

UNIT -II OSCILLOSCOPES

1	a)	What are the Standard Specifications of CRO?	[L1] [CO1]	[4M]
	b)	Explain in detail the important features of CRT.	[L2] [CO1]	[8M]
2		Derive the Deflection of Sensitivity.	[L3] [CO1]	[12M]
3		Describe the working principle of vertical amplifier using a neat sketch.	[L2] [CO1]	[6M]
	b)	With neat sketch, explain in detail about Horizontal amplifier.	[L2] [CO2]	[6M]
4		Sketch the horizontal deflection systems and explain it's working principle.	[L2] [CO3]	[6M]
	b)	Sketch the Vertical deflection systems and explain it's working principle.	[L3] [CO3]	[6M]
5	a)	Describe the working principle of a Sweep Trigger Pulse generator using a neat sketch.	[L2] [CO1]	[6M]
	b)	Draw the block diagram of Delay line circuit and explain its working.	[L2] [CO1]	[6M]
6	a)	Draw and explain the block diagram of CRO Probe.	[L1] [CO2]	[4M]
	b)	Write a short notes on CRO Probes.	[L1] [CO2]	[8M]
7		Describe the working principle of a Triggered sweep CRO with a neat sketch.	[L2] [CO1]	[8M]
	b)	Write a short notes on Delayed Sweep	[L1] [CO2]	[4M]
8		With the neat sketch, explain the working principle of Dual beam oscilloscope.	[L2] [CO1]	[12M]
9	a)	Explain the procedure of signal's Amplitude, Frequency and Phase measurement using a Lissajous method using neat diagrams.	[L2] [CO2]	[6M]
		Describe in detail the construction and working of a Digital Storage Oscilloscope.	[L2] [CO1]	[6M]
10	a)	Write the advantages of Digital Storage Oscilloscope.	[L1] [CO1]	[4M]
		Explain the operation of Digital frequency Meter/ counter and write it's applications.	[L2] [CO2]	[8M]

Course Code: 20EC0430 **R20**

UNIT –III SIGNAL GENERATORS

1	a)	Define Oscillator and Explain in detail about fixed and variable AF oscillators.	[L2] [CO4]	[6M]
	b)	Using a neat block diagram explain the operation of a function generator.	[L1] [CO4]	[6M]
2	a)	List the Specifications of function generator.	[L1] [CO3]	[4M]
	b)	With a neat diagram, illustrate the operation of a Pulse generator.	[L3] [CO3]	[8M]
3	a)	List the Specifications of Pulse generator.	[L1] [CO3]	[4M]
	b)	Explain the method to generate random noise.	[L2] [CO3]	[8M]
4	a)	List the Specifications of random noise generator.	[L1] [CO3]	[4M]
	b)	What is a sweep generator? Explain in detail about its working.	[L1] [CO3]	[8M]
5	a)	List the Specifications of sweep generator.	[L1] [CO3]	[4M]
	b)	With a neat sketch, explain the operation of arbitrary waveform generator.	[L2] [CO5]	[8M]
6	a)	What are the different specifications of arbitrary waveform generator?	[L1] [CO3]	[4M]
	b)	Define Wave Analyzer and Explain it's working principle.	[L1] [CO3]	[8M]
7	a)	Describe the operation of Frequency selective type wave Analyzer using a neat diagram.	[L2] [CO3]	[6M]
	b)	Describe the operation of Heterodyne Wave Analyzer using a neat diagram.	[L2] [CO3]	[6M]
8	a)	Explain the working principle of Harmonic distortion analyzer.	[L2] [CO3]	[6M]
	b)	Write a short note on distortions caused by Amplifiers.	[L2] [CO3]	[6M]
9	a)	Explain the working principle of spectrum analyzer.	[L2] [CO3]	[8M]
	b)	Write the applications of spectrum analyzer	[L1] [CO3]	[4M]
10	a)	Draw the block diagram of logic analyzer and explain its working.	[L1] [CO4]	[8M]
	b)	Write the applications of logic analyzer	[L1] [CO3]	[4M]

Course Code: 20EC0430 **R20**

UNIT –IV REVIEW OF DC & AC BRIDGES

1	a)	Describe the operation of the Wheatstone bridge and derive the expression	[L3] [CO3]	[6M]
	·	for current when the bridge is unbalanced.		
	b)	For an unbalanced Wheatstone bridge given in figure below, calculate the current through the galvanometer.	[L3] [CO4]	[6M]
		R_1 $R_2 = 2.5 \text{ k}$ R_3 $R_4 = 10 \text{ k}$		
2	,	Describe the operation of the Wheatstone bridge and derive the expression for DC resistance.	[L3] [CO3]	[12M]
3	a)	Derive an expression of frequency measurement using Wein's Bridge.	[L3] [CO3]	[6M]
	b)	A Wein bridge circuit consists of the following: R_1 =4.7 $K\Omega$, C_1 =5 nf , R_2 =20 $K\Omega$, C_3 =10 nf , R_3 =10 $K\Omega$, R_4 =100 $K\Omega$. Determine the frequency of the circuit.	[L3] [CO4]	[6M]
4	a)	What are the errors and precautions to be taken while using the Bridge circuits?	[L1] [CO6]	[6M]
	b)	What are the different types of AC bridges? Explain any one type of bridge.	[L1] [CO4]	[6M]
5	a)	Explain briefly how a Maxwell Bridge is used for measuring an unknown inductance.	[L2] [CO2]	[6M]
	b)	A Maxwell bridge is used to measure an inductive impedance. The bridge constants at balance are C_1 = 0.01 μ F, R_1 =470 $k\Omega$, R_2 =5.1 $k\Omega$ and R_3 =100 $k\Omega$. Find the series equivalent of unknown impedance.	[L3] [CO4]	[6M]
6	a)	Describe the operation of the Anderson's bridge circuit.	[L2] [CO3]	[8M]
	b)	Write the advantages and disadvantages Anderson's bridge circuit.	[L2] [CO3]	[4M]
7	a)	Derive the expression of unknown resistance of a Schering bridge circuit.	[L3] [CO4]	[6M]
	b)	An A.C bridge has Arm AB-capacitor of $0.2\mu F$ in parallel with $3k\Omega$ resistor, Arm AD-resistance of $5k\Omega$, Arm BC capacitor of $0.15~\mu F$, Arm CD-unknown capacitor C_X and R_X in series f-3KHz.Determine the unknown capacitance.	[L3] [CO4]	[6M]
8	a)	Explain the working principle of Schering bridge circuit.	[L2] [CO3]	[6M]
	b)	An A.C bridge has Arm AB-capacitor of $0.1\mu F$ in parallel with $2K\Omega$ resistor, Arm AD-resistance of $5K\Omega$, Arm BC capacitor of $0.25~\mu F$, Arm CD-unknown capacitor C_X and R_X in series and frequency $2KHz$. Determine the unknown capacitance.	[L3] [CO4]	[6M]
9	a)	What are the advantages of Kelvin's bridge?	[L1] [CO3]	[4M]
	b)	Derive the expression of an unknown resistance using Kelvin's bridge.	[L3] [CO3]	[8M]
10	a)	Discuss in detail about the working principle of Q-meter & its applications.	[L2] [CO4]	[8M]
	b)	Write the advantages and disadvantages of Q-meter.	[L1] [CO1]	[4M]

Course Code: 20EC0430

UNIT –V SENSORS & TRANSDUCERS

1	a)	Define a transducer. What are the different types of Transducers?	[L1] [CO1]	[6M]
	a)	•		
	b)	Discuss in brief about Sensors and Transducers.	[L2] [CO1]	[6M]
2		Describe the operation of i) Resistive transducers	[L2] [CO5]	[12M]
		ii) Capacitive transducers		
		iii) Inductive transducers		
3	a)	Write a short notes on Measurement of Displacement using Resistive transducers.	[L2] [CO5]	[6M]
	b)	Write a short notes on Measurement of Displacement using Capacitive transducers.	[L2] [CO5]	[6M]
4	a)	With a neat sketch, explain the operation of LVDT.	[L1] [CO5]	[6M]
	b)	Write the advantages & disadvantages of LVDT.	[L1] [CO6]	[6M]
5	a)	Explain in detail about the Strain gauge Transducer.	[L2] [CO1]	[6M]
	b)	Write the advantages & disadvantages of Strain gauge.	[L1] [CO6]	[6M]
6	a)	Distinguish between the Active & Passive transducers.	[L4] [CO5]	[6M]
	b)	With a neat sketch, explain the operation of piezo-electric transducers in detail.	[L2] [CO1]	[6M]
7	a)	Draw the diagram of Resistance Thermometer and explain briefly.	[L2] [CO5]	[8M]
	b)	What are the advantages & disadvantages of Resistance thermometer?	[L1] [CO5]	[4M]
8	a)	Explain about thermocouple. List its advantages and applications.	[L2] [CO3]	[6M]
	b)	Explain the operation of thermistors and write its limitations.	[L2] [CO1]	[6M]
9	a)	Discuss in brief about Moving Coil type Velocity transducers.	[L2] [CO1]	[6M]
	b)	Discuss in brief about Moving Magnetic type Velocity transducers	[L2] [CO1]	[6M]
10	a)	Explain in brief about Accelerometer Transducer.	[L2] [CO1]	[6M]
	b)	Explain in detail about Vibration Transducer.	[L2] [CO1]	[6M]

Prepared By – Dr.R.RAVINDRAIAH, Mrs.J.JHANSI, Mrs.P.SARANYA